Contrastive Adversarial Learning for Person Independent Facial Emotion Recognition

نویسندگان

چکیده

Since most facial emotion recognition (FER) methods significantly rely on supervision information, they have a limit to analyzing emotions independently of persons. On the other hand, adversarial learning is well-known approach for generalized representation because it never requires information. This paper presents new FER. In detail, proposed enables FER network better understand complex emotional elements inherent in strong by adversarially weak samples based samples. As result, method can recognize persons understands expressions more accurately. addition, we propose contrastive loss function efficient learning. Finally, scheme was theoretically verified, and experimentally proven show state art (SOTA) performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Person Independent Facial Expression Recognition Using 3D Facial Feature Positions

Facial expressions contain a lot of information about the feelings of a human. They play an important role in human-computer interaction. In this paper, we propose a person independent facial expression recognition algorithm based on 3-Dimensional (3D) geometrical facial feature positions to classify the six basic expressions of the face: Anger, disgust, fear, happiness, sadness and surprise. T...

متن کامل

Geometry-Contrastive Generative Adversarial Network for Facial Expression Synthesis

In this paper, we propose a geometry-contrastive generative adversarial network GC-GAN for generating facial expression images conditioned on geometry information. Specifically, given an input face and a target expression designated by a set of facial landmarks, an identity-preserving face can be generated guided by the target expression. In order to embed facial geometry onto a semantic manifo...

متن کامل

Facial Emotion Recognition using Deep Learning

Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...

متن کامل

Anthropometric Facial Emotion Recognition

The aim of this project is detection, analysis and recognition of facial features. The system operates on grayscale images. For the analysis Haar-like face detector was used along with anthropometric face model and a hybrid feature detection approach. The system localizes 17 characteristic points of analyzed face and, based on their displacements certain emotions can be automatically recognized...

متن کامل

Deep generative-contrastive networks for facial expression recognition

As the expressive depth of an emotional face differs with individuals, expressions, or situations, recognizing an expression using a single facial image at a moment is difficult. One of the approaches to alleviate this difficulty is using a video-based method that utilizes multiple frames to extract temporal information between facial expression images. In this paper, we attempt to utilize a ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i7.16743